Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates.
نویسندگان
چکیده
Cuprate high-Tc superconductors exhibit enigmatic behavior in the nonsuperconducting state. For carrier concentrations near "optimal doping" (with respect to the highest Tcs) the transport and spectroscopic properties are unlike those of a Landau-Fermi liquid. On the Mott-insulating side of the optimal carrier concentration, which corresponds to underdoping, a pseudogap removes quasi-particle spectral weight from parts of the Fermi surface and causes a breakup of the Fermi surface into disconnected nodal and antinodal sectors. Here, we show that the near-nodal excitations of underdoped cuprates obey Fermi liquid behavior. The lifetime τ(ω, T) of a quasi-particle depends on its energy ω as well as on the temperature T. For a Fermi liquid, 1/τ(ω, T) is expected to collapse on a universal function proportional to (ℏω)(2) + (pπk(B)T)(2). Magneto-transport experiments, which probe the properties in the limit ω = 0, have provided indications for the presence of a T(2) dependence of the dc (ω = 0) resistivity of different cuprate materials. However, Fermi liquid behavior is very much about the energy dependence of the lifetime, and this can only be addressed by spectroscopic techniques. Our optical experiments confirm the aforementioned universal ω- and T dependence of 1/τ(ω, T), with p ∼ 1.5. Our data thus provide a piece of evidence in favor of a Fermi liquid-like scenario of the pseudogap phase of the cuprates.
منابع مشابه
Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering
In the search for mechanisms of high-temperature superconductivity it is critical to know the electronic spectrum in the pseudogap phase from which superconductivity evolves. The lack of angle-resolved photoemission data for every cuprate family precludes an agreement as to its structure, doping and temperature dependence and the role of charge ordering. Here we show that, in the entire Fermi-l...
متن کاملFermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates
The role of Coulomb correlations in the iron pnictide LaFeAsO is studied by generalizing exact diagonalization dynamical mean-field theory to five orbitals. For rotationally invariant Hund’s rule coupling a transition from a paramagnetic Fermi-liquid phase to a non-Fermi-liquid metallic phase exhibiting frozen moments is found at moderate Coulomb energies. For Ising-like exchange, this transiti...
متن کاملGap and pseudogap evolution within the charge-ordering scenario for superconducting cuprates
We describe the spectral properties of underdoped cuprates as resulting from a momentumdependent pseudogap in the normal state spectrum. Such a model accounts, within a BCS approach, for the doping dependence of the critical temperature and for the two-parameter leading-edge shift observed in the cuprates. By introducing a phenomenological temperature dependence of the pseudogap, which finds a ...
متن کاملCoexisting Order in the Pseudogap State of Cuprates
A pseudogap is shown to be a magnetic diffuson (MD) in a state with classical localization order coexisting with Quantum Peierls (QP) order. A soft quantum localization mode, a phason, ensures scale invariance with strong correlations among different momentum states seen as a circular Fermi surface with a gap in ARPES when phase fluctuations are random. These correlations imply a state with coe...
متن کاملSpectroscopic Fingerprint of Phase-Incoherent Superconductivity in the Underdoped Bi2Sr2CaCu2O8+d
A possible explanation for the existence of the cuprate “pseudogap” state is that it is a d-wave superconductor without quantum phase rigidity. Transport and thermodynamic studies provide compelling evidence that supports this proposal, but few spectroscopic explorations of it have been made. One spectroscopic signature of d-wave superconductivity is the particle-hole symmetric “octet” of dispe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 15 شماره
صفحات -
تاریخ انتشار 2013